
GPU Computing with

OpenACC Directives
Alexey Romanenko

Based on Jeff Larkin’s PPTs

3 Ways to Accelerate Applications

Applications

Libraries

“Drop-in”

Acceleration

Programming

Languages
OpenACC

Directives

Maximum

Flexibility

Easily Accelerate

Applications

OpenACC Directives

Program myscience

 ... serial code ...

!$acc kernels

 do k = 1,n1

 do i = 1,n2

 ... parallel code ...

 enddo

 enddo

!$acc end kernels

 ...

End Program myscience

CPU GPU

Your original

Fortran or C code

Simple Compiler hints

Compiler Parallelizes code

Works on many-core GPUs &

multicore CPUs

OpenACC

Compiler

Hint

OpenACC
Open Programming Standard for Parallel Computing

“OpenACC will enable programmers to easily develop portable applications that maximize
the performance and power efficiency benefits of the hybrid CPU/GPU architecture of
Titan.”

--Buddy Bland, Titan Project Director, Oak Ridge National Lab

“OpenACC is a technically impressive initiative brought together by members of the
OpenMP Working Group on Accelerators, as well as many others. We look forward to
releasing a version of this proposal in the next release of OpenMP.”

--Michael Wong, CEO OpenMP Directives Board

OpenACC Standard

Easy: Directives are the easy path to accelerate compute

 intensive applications

Open: OpenACC is an open GPU directives standard, making GPU

 programming straightforward and portable across parallel

 and multi-core processors

Powerful: GPU Directives allow complete access to the massive

 parallel power of a GPU

OpenACC

The Standard for GPU Directives

2 Basic Steps to Get Started

Step 1: Annotate source code with directives:

Step 2: Compile & run:

pgf90 -ta=nvidia -Minfo=accel file.f

!$acc data copy(util1,util2,util3) copyin(ip,scp2,scp2i)

 !$acc parallel loop

 …

 !$acc end parallel

!$acc end data

OpenACC Directives Example

 iter=0

 do while (err > tol .and. iter < iter_max)

 iter = iter +1

 err=0._fp_kind

 do j=1,m

 do i=1,n

 Anew(i,j) = .25_fp_kind *(A(i+1,j) + A(i-1,j) &

 +A(i ,j-1) + A(i ,j+1))

 err = max(err, Anew(i,j)-A(i,j))

 end do

 end do

 A = Anew

 IF(mod(iter,100)==0 .or. iter == 1) print *, iter, err

 end do

OpenACC Directives Example
!$acc data copy(A) create(Anew)

 iter=0

 do while (err > tol .and. iter < iter_max)

 iter = iter +1

 err=0._fp_kind

!$acc kernels

 do j=1,m

 do i=1,n

 Anew(i,j) = .25_fp_kind *(A(i+1,j) + A(i-1,j) &

 +A(i ,j-1) + A(i ,j+1))

 err = max(err, Anew(i,j)-A(i,j))

 end do

 end do

 A = Anew

!$acc end kernels

 IF(mod(iter,100)==0 .or. iter == 1) print *, iter, err

 end do

!$acc end data

Copy arrays into GPU memory

within data region

Parallelize code inside region

Close off parallel region

Close off data region,

copy data back

OpenACC Directives

Parallel execution
parallel, kernels, loop

Data management
data, enter data, exit data, update

Other
routine

atomic

host_data

wait

OpenACC “parallel” Directive

parallel - Programmer identifies a block of code containing parallelism.
Compiler generates a kernel.

#pragma acc parallel

{

for(int i=0; i<N; i++){

 y[i] = a*x[i]+y[i];

}

for(int i=0; i<N; i++){

 z[i] = a*x[i]+z[i];

}

}

acc parallel [clauses]

clauses:

• async

• if

• reduction

• num_gangs

• vector_length

• device_type

• …

OpenACC “kernels” Directive

The kernels construct expresses that a region may contain parallelism and the

compiler determines what can safely be parallelized.

#pragma acc kernels

{

for(int i=0; i<N; i++){

 x[i] = 1.0;

 y[i] = 2.0;

}

for(int i=0; i<N; i++){

 y[i] = a*x[i] + y[i];

}

}

kernel 1

kernel 2

acc kernels [clauses]

clauses:

• async

• if

• device_type

• …

OpenACC “parallel” vs. “kernels”

PARALLEL LOOP

Requires analysis by

programmer to ensure safe

parallelism

Will parallelize what a compiler

may miss

Straightforward path from

OpenMP

KERNELS

Compiler performs parallel

analysis and parallelizes what it

believes safe

Can cover larger area of code

with single directive

Gives compiler additional

leeway to optimize.

OpenACC “async” and “wait”

async(n): launches work asynchronously in queue n

wait(n): blocks host until all operations in queue n have completed

Can significantly reduce launch latency, enables pipelining and

concurrent operations

!$acc parallel loop async(1)

! do loop here

!$acc end parallel

 call do_something_on_cpu()

!$acc wait(1)

OpenACC “loop” Directive

The loop directive describes what type of parallelism to use to execute the
loop

Clauses:

independent

collapse (n)

private (var-list)

reduction (operator:var-list)

gang [(int-expresion)]

vector [(int-expresion)]

…

OpenACC “loop” directive: private & reduction

The private and reduction clauses are not optimization clauses, they

may be required for correctness.

private – A copy of the variable is made for each loop iteration

reduction - A reduction is performed on the listed variables.

Supports +, *, max, min, and various logical operations

!$acc loop private(tmp) reduction(max:err)

do I=1,M

 tmp = a(I-1) + 2.0*a(I)…

 err = max(err,tmp)

enddo

OpenACC “loop” directive: gang & vector

The gang clause specifies that the iterations of the associated

loop or loops are to be executed in parallel.

The vector clause specifies that the iterations of the associated loop or

loops are to be executed in vector or SIMD mode.

!$acc loop gang vector(16)

do I=2,M-1

!$acc loop gang vector(16)

 do J=2,N-1

 out(J,I) = coef*(a(J-1,I-1)+a(J,I-1)…

 enddo

enddo

Managed Memory

Works for

NVIDIA Kepler GPU and newer

64-bit Linux OS

dynamically-allocated memory

Compiler’s flag

pgfortran -ta=nvidia:managed

OpenACC “data” Directive

copy (list) Allocates memory on GPU and copies data from host to
GPU when entering region and copies data to the host
when exiting region.

copyin (list) Allocates memory on GPU and copies data from host to
GPU when entering region.

copyout (list) Allocates memory on GPU and copies data to the host
when exiting region.

create (list) Allocates memory on GPU but does not copy.

present (list) Data is already present on GPU from another containing
data region.

and present_or_copy[in|out], present_or_create, deviceptr.

OpenACC Directives Example

!$acc data copy(A) create(Anew)

 iter=0

 do while (err > tol .and. iter < iter_max)

 iter = iter +1

 err=0._fp_kind

!$acc kernels

 do j=1,m

 do i=1,n

 Anew(i,j) = .25_fp_kind *(A(i+1,j) + A(i-1,j) &

 +A(i ,j-1) + A(i ,j+1))

 err = max(err, Anew(i,j)-A(i,j))

 end do

 end do

 A = Anew

!$acc end kernels

 IF(mod(iter,100)==0 .or. iter == 1) print *, iter, err

 end do

!$acc end data

Copy array “A” into GPU memory

within data region, create array

“Anew”

OpenACC “enter data” & “exit data”

Used to define data regions when scoping doesn’t allow the use of normal

data regions (e.g. the constructor/destructor of a class).

enter data Defines the start of an unstructured data lifetime

 clauses: copyin(list), create(list),
 present_or_copyin(list), present_or_create(list)

exit data Defines the end of an unstructured data lifetime

 clauses: copyout(list), delete(list)

#pragma acc enter data copyin(a)

...

#pragma acc exit data delete(a)

Array Shaping

Compiler sometimes cannot determine size of arrays

Must specify explicitly using data clauses and array “shape”

C/C++

#pragma acc data copyin(a[0:size]), copyout(b[s/4:3*s/4])

Fortran

!$acc data copyin(a(1:end)), copyout(b(s/4:3*s/4))

OpenACC “update” Directive

Programmer specifies an array (or part of an array) that should be

refreshed within a data region.

do_something_on_device()

!$acc update self(a)

do_something_on_host()

!$acc update device(a)

Copy “a” from GPU to CPU

Copy “a” from CPU to GPU

OpenACC “routine” Directive

Specifies that the compiler should generate a device copy of the
function/subroutine and what type of parallelism the routine contains.

Clauses:

gang/worker/vector/seq
Specifies the level of parallelism contained in the routine.

bind
Specifies an optional name for the routine, also supplied at call-site

no_host
The routine will only be used on the device

device_type
Specialize this routine for a particular device type.

OpenACC “routine” Directive

// mandelbrot.h

#pragma acc routine seq

unsigned char mandelbrot(int Px, int Py);

// Used in main()

#pragma acc parallel loop

for(int y=0;y<HEIGHT;y++) {

 for(int x=0;x<WIDTH;x++) {

 image[y*WIDTH+x]=mandelbrot(x,y);

 }

}

At function source:

Function needs to be

built for the GPU.

It will be called by each

thread (sequentially)

At call the compiler needs

to know:

Function will be

available on the GPU

It is a sequential routine

OpenACC “atomic” Directive

atomic: subsequent block of code is performed atomically with respect
to other threads on the accelerator

Clauses: read, write, update, capture

#pragma acc parallel loop

for(int i=0; i<N; i++) {

 #pragma acc atomic update

 a[i%100]++;

}

Interoperability

OpenACC plays well with others.

Add CUDA, OpenCL, or accelerated libraries to an OpenACC

application

Add OpenACC to an existing accelerated application

Share data between OpenACC and CUDA

OpenACC “host_data” directive

Exposes the device address of particular objects to the host code.

#pragma acc data copy(x,y)

{

// x and y are host pointers

#pragma acc host_data use_device(x,y)

{

 // x and y are device pointers

}

// x and y are host pointers

}

X and Y are device

pointers here

OpenACC “host_data” Example
program main

 integer, parameter :: N = 2**20

 real, dimension(N) :: X, Y

 real :: A = 2.0

 !$acc data

 ! Initialize X and Y

 ...

 !$acc host_data use_device(x,y)

 call saxpy(n, a, x, y)

 !$acc end host_data

 !$acc end data

end program

__global__

void saxpy_kernel(int n, float a,

 float *x, float *y)

{

 int i = blockIdx.x*blockDim.x + threadIdx.x;

 if (i < n) y[i] = a*x[i] + y[i];

}

void saxpy(int n, float a, float *dx, float *dy)

{

 // Launch CUDA Kernel

 saxpy_kernel<<<4096,256>>>(N, 2.0, dx, dy);

}

• It’s possible to interoperate from

C/C++ or Fortran.

• OpenACC manages the data and

passes device pointers to CUDA.

• CUDA kernel launch wrapped in function

expecting device arrays.

• Kernel is launch with arrays passed from

OpenACC in main.

CUBLAS Librry & OpenACC

OpenACC can interface with existing

GPU-optimized libraries (from C/C++

or Fortran).

This includes…

CUBLAS

Libsci_acc

CUFFT

MAGMA

CULA

Thrust

…

int N = 1<<20;

float *x, *y

// Allocate & Initialize X & Y

...

cublasInit();

#pragma acc data copyin(x[0:N]) copy(y[0:N])

{

 #pragma acc host_data use_device(x,y)

 {

 // Perform SAXPY on 1M elements

 cublasSaxpy(N, 2.0, x, 1, y, 1);

 }

}

cublasShutdown();

Profiling

PGI_ACC_TIME=1

nvprof, nvvp
mpirun –np <n> nvprof –o name.%p.nvprof <program>

mpirun –np <n> nvprof –o name.%q{OMPI_COMM_WORLD_RANK}.nvprof <program>

Use NVTX library
http://devblogs.nvidia.com/parallelforall/customize-cuda-fortran-profiling-nvtx/

Debugging

PGI_ACC_NOTIFY={bit mask}

1 – kernels launch, 2 – data transfers, 4 – sync operations,

8 – region entry/exit, 16 – data allocation/free

PGI_ACC_DEBUG=1

PGI_ACC_SYNCHRONOUS=1

Use “if” clause and “update” directives

Process of Adaptation

Identify Available Parallelism

What important parts of the code have available parallelism?

Parallelize Loops

Express as much parallelism as possible and ensure you still get correct results.

Because the compiler must be cautious about data movement, the code will

generally slow down.

Optimize Data Locality

The programmer will always know better than the compiler what data movement

is unnecessary.

Optimize Loop Performance

Don’t try to optimize a kernel that runs in a few us or ms until you’ve eliminated

the excess data motion that is taking many seconds.

Typical Porting Experience with OpenACC

Directives

Step 2
Parallelize

Loops with

OpenACC

A
p
p
li
c
a
ti

o
n
 S

p
e
e
d
-u

p

Development Time

Step 1

Identify

Available

Parallelism

Step 3

Optimize Data

Locality

Step 4
Optimize

Loops

Misc Advices

Write Parallelizable loops

Avoid pointer arithmetic

Write countable loops

Write rectangular loops

for(int i=0;i<N;i++)

 for(int j=i;j<N;j++)

 sum+=A[i][j];

for(int i=0;i<N;i++)

 for(int j=0;j<N;j++)

 if(j>=i)

 sum+=A[i][j];

bool found=false;

while(!found && i<N){

 if(a[i]==val){

 found=true; loc=i;

 }

 i++;

}

bool found=false;

for(int i=0;i<N;i++){

 if(a[i]==val && found == false){

 found=true

 loc=i;

 }

}

C99: “restrict” keyword

Declaration of intent given by the programmer to the compiler

Applied to a pointer, e.g.

 float *restrict ptr

Meaning: “for the lifetime of ptr, only it or a value directly derived from it

(such as ptr + 1) will be used to access the object to which it points”

Parallelizing compilers often require restrict to determine

independence

Otherwise the compiler can’t parallelize loops that access ptr

float restrict *ptr

float *restrict ptr http://en.wikipedia.org/wiki/Restrict

http://en.wikipedia.org/wiki/Restrict
http://en.wikipedia.org/wiki/Restrict

OpenACC: “collapse” clause

collapse(n): Transform the following n tightly nested loops into one,

flattened loop.

Useful when individual loops lack sufficient parallelism or more than 3

loops are nested (gang/worker/vector)

#pragma acc parallel

#pragma acc loop collapse(2)

for(int i=0; i<N; i++)

 for(int j=0; j<N; j++)

 ...

#pragma acc parallel

#pragma acc loop

for(int ij=0; ij<N*N; ij++)

 ...

Kernel Fusion

Kernel calls are expensive

Each call can take over 10us in order to launch

It is often a good idea to combine loops of same trip counts containing very

few lines of code

Kernel Fusion (i.e. Loop fusion)

Join nearby kernels into a single kernel

#pragma acc parallel loop

for (int i = 0; i < n; ++i)

 a[i]=0;

#pragma acc parallel loop

for (int i = 0; i < n; ++i)

 b[i]=0;

#pragma acc parallel loop

 for (int i = 0; i < n; ++i) {

 a[i]=0;

 b[i]=0;

}

Loop Fusion

Loops that are exceptionally long may result in kernels that are resource-

bound, resulting in low GPU occupancy.

This is particularly true for outer parallel loops containing nested loops

Caution: This may introduce temporaries.

#pragma acc parallel loop

for (int j = 0; j < m; ++j) {

 for (int i = 0; i < n; ++i) {

 a[i]=0;

 }

 for (int i = 0; i < n; ++i) {

 b[i]=0;

 }

}

#pragma acc parallel loop

for (int j = 0; j < m; ++j)

 for (int i = 0; i < n; ++i) {

 a[i]=0;

 }

#pragma acc parallel loop

for (int j = 0; j < m; ++j)

 for (int i = 0; i < n; ++i) {

 b[i]=0;

 }

OpenACC Debugging

Most OpenACC directives accept an if(condition) clause

#pragma acc update self(A) if(debug)

#pragma acc parallel loop if(!debug)

[…]

#pragma acc update device(A) if(debug)

Use default(none) to force explicit data directives

#pragma acc data copy(…) create(…) default(none)

Real-Time Object
Detection

Global Manufacturer of Navigation
Systems

Valuation of Stock Portfolios
using Monte Carlo

Global Technology Consulting Company

Interaction of Solvents and
Biomolecules

University of Texas at San Antonio

Directives: Easy & Powerful

Optimizing code with directives is quite easy, especially compared to CPU threads or writing CUDA kernels. The
most important thing is avoiding restructuring of existing code for production applications. ”

-- Developer at the Global Manufacturer of Navigation Systems

“
5x in 40 Hours 2x in 4 Hours 5x in 8 Hours

Start Now with OpenACC Directives

Get free trial license to PGI Accelerator

http://www.nvidia.com/gpudirectives

Sign up for a free online course

https://developer.nvidia.com/openacc-course

Get your free OpenACC Toolkit

http://www.nvidia.com/object/openacc-toolkit.html

http://www.nvidia.com/gpudirectives
https://developer.nvidia.com/openacc-course
https://developer.nvidia.com/openacc-course
https://developer.nvidia.com/openacc-course
https://developer.nvidia.com/openacc-course
http://www.nvidia.com/object/openacc-toolkit.html
http://www.nvidia.com/object/openacc-toolkit.html
http://www.nvidia.com/object/openacc-toolkit.html
http://www.nvidia.com/object/openacc-toolkit.html

Thank you

